Find the zero of the polynomial : $p(x)=c x+d, \,c \neq 0, \,c,\,d$ are real numbers.
$-\frac{ d }{ c }$
$d$
$\frac{ d }{ c }$
$-\frac{ c }{ d }$
Factorise of the following : $64 m^{3}-343 n^{3}$
Expand each of the following, using suitable identities : $(2 x-y+z)^{2}$
Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
Factorise : $x^{3}-2 x^{2}-x+2$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=x^{2}-1, \,x=1,\,-1$